GUIDANCE ON THE MANAGEMENT OF ASBESTOS

Asbestos is a naturally occurring mineral which was used extensively in building until the 1980's. It has excellent insulation qualities and resistance to fire and was used in an enormous variety of products and applications. Unfortunately, it can give off minute fibres, when broken, which can lead to severe respiratory and other diseases which can be fatal. Asbestos can no longer be used at all. The attached Appendix I gives further more scientific detail.

The Control of Asbestos Regulations 2012 explains how asbestos should be managed and handled. Basically, it places a duty on employers and property managers to manage asbestos through identification and appropriate procedures and requires only licensed persons to work with asbestos.

Generally, churches will contain little asbestos as most were built well before its introduction and have seen little changes since. Asbestos is most likely to occur in heating insulation and partitions installed in the 20th Century. Ideally, all churches should commission an Asbestos Survey which would identify where asbestos is located (through laboratory testing) and set out a basic management plan. A more detailed survey and plan may be needed where large quantities of asbestos are found.

Given these costs, not all churches will be able to undertake such a survey. They should therefore adopt the following approach:

1. Quinquennial Inspectors are requested to give an indication of whether they suspect asbestos is present in a church and to indicate this in the QI report. PCCs should therefore use this as a starting point for any future asbestos investigations.

2. If asbestos is suspected, then its locations should be noted and no work undertaken until a survey has been undertaken.

3. **Asbestos is generally benign if undisturbed and can remain in place depending on its nature and location, providing it is properly managed.** It is only when it is disturbed that spores are released. See the section below on managing asbestos left in place for further advice. If there is damage to suspected asbestos, a survey should be undertaken.

4. Asbestos should only be removed by licensed contractors. Your asbestos surveyor will be able to advise on the following:

 a) The area in which the work is taking place should only be occupied by workmen appointed to remove the asbestos and not by members of the public or PCC staff/church members.
b) It is strongly recommended that the building is closed whilst the asbestos removal is taking place.

c) When the asbestos removal is complete, the air in the area should be tested by an accredited laboratory.

5. If significant works are proposed to a building (including demolition) a survey should be undertaken prior to this.

6. Your Diocesan Inspector can advise on a suitable asbestos surveyor in your area.

7. EIG should be advised where works to asbestos are proposed.

Managing Asbestos left in place

- If your survey recommends it, or if you decide to leave asbestos (or materials containing asbestos) in place, then make a note of where it is on your plan or other records and make sure this information is kept up to date.

- Setting up a register of the location and condition of asbestos or suspected asbestos in buildings is a good idea, but be aware that some hidden asbestos may also be present.

- You must make sure that everyone who needs to know about the asbestos is effectively alerted to its presence. For example, if you have electricians or plumbers on site who may be drilling in areas near where asbestos has been identified or is suspected. Most tradesman and contractors should be aware of areas where asbestos is likely to have been used but this should not be assumed. If access is required to areas where asbestos is known or suspected to be, then you must have a survey conducted by a suitably qualified asbestos surveyor before any work can take place.

- It is important to label asbestos clearly with an asbestos warning sign or use some other warning system eg. a colour coding system. If you decide not to label the asbestos, you need to make sure that those who might work on the material know that it contains, or may contain, asbestos.

- You will need to introduce a method that will ensure anyone who comes to carry out work on the premises does not start before they are given the relevant information on any asbestos present. For example, a permit-to-work system, where you control access to the premises and only allow people in with a permit, would be one suitable method. This means that no one is allowed to work on the premises, unless they have a permit from you or a nominated employee, so you know what they are working on and where to prevent asbestos being accidentally disturbed.

- It can save time and prevent confusion if you make a note of the location of non-asbestos material which could be mistaken for asbestos (if known).
Encapsulation

If an asbestos containing material (ACM) is to be left in place, it sometimes possible to apply an impervious material over or around it. This procedure is called encapsulation and is designed to prevent the release of fibres under normal conditions such as vibration, impact and age degradation. The condition and type of ACM needs to be carefully assessed before encapsulation can take place as not all ACMs are suitable for this procedure. Encapsulation does not negate the need to record the presence of ACMs or implement an asbestos management plan.

Types of Survey

1. Management Survey – this is a standard survey designed to locate (as far as reasonably practicable) the presence and extent of any asbestos containing materials (ACMs) in the building which could be damaged or disturbed during normal use, including any maintenance or installation work, and to assess their condition. The survey forms the basis of an asbestos management plan and will usually involve some sampling and analysis (and minor intrusion) to confirm the presence of any ACMs. Surveys can also be completed with the presumption of the presence or absence of ACMs and any sampling and analysis work can be deferred until a later date (eg. before any work to the area is carried out).

2. Refurbishment & Demolition Survey – this type of survey is needed before any work can be done in an area of a building where the presence of ACMs are suspected, or the whole building if demolition is taking place. The survey is intrusive and will involve destruction inspection where necessary, to gain full access to suspected ACMs. This type of survey should only be done by a suitably qualified asbestos surveyor and the removal of any ACMs carried out by an accredited contractor.

Further Information:

There is extensive information about asbestos on the Health & Safety Executive (HSE) website, which has a section dedicated to managing and working with asbestos: http://www.hse.gov.uk/asbestos/index.htm.

A good starting point is the HSE document “Managing asbestos in buildings: a brief guide” which can be downloaded at: http://www.hse.gov.uk/pubns/indg223.pdf.

A more detailed HSE guide, “Asbestos: the Survey guide” discusses which type of asbestos survey is appropriate and what it should contain, selecting a competent surveyor and identifying ACMs and where to find them. It can be downloaded at: http://www.hse.gov.uk/pubns/priced/hsg264.pdf.

Any professional asbestos surveyor or company will need to be accredited to work with asbestos. The United Kingdom Accreditation Service (UKAS) website can be searched for suitably qualified asbestos surveyors and laboratories at: http://www.ukas.com/default.asp.

Companies or individuals who are competent to remove asbestos from premises should be a member of the Asbestos Removal Contractors Association (ARCA). The website has a list of contractors that can be searched geographically at: http://www.arca.org.uk/arca-asbestos-removal-contractors-association.asp.
Appendix 1 - About Asbestos

There are different types of asbestos:

White asbestos - Chrysotile is obtained from serpentine rocks. It is less friable (and therefore less likely to be inhaled) than the other types and is the type most often used industrially. There is some evidence that this form of asbestos is not as harmful when inhaled. However it should be noted that there is also evidence that this type of asbestos is harmful, although not perhaps as harmful as other forms (refer to UK Health & Safety Commission report Asbestos: Effects on health of exposure to asbestos, 1985).

Brown asbestos - Amosite, also known as Grunerite, is an amphibole from Africa, named as an acronym from Asbestos Mines of South Africa.

Blue asbestos - Riebeckite, also known as Crocidolite, is an amphibole from Africa and Australia. It is the fibrous form of riebeckite. Blue asbestos is commonly thought of as the most dangerous type of asbestos (see above and below).

Amphibole group (Brown and Blue Asbestos)

Amosite and Crocidolite were used in many products until the early 1980s. The use of all types of asbestos in the amphibole group was banned in the mid-1980s. These products were mainly:

- Low density insulation board and ceiling tiles
- Asbestos cement sheets and pipes for construction, casing for water and electrical/telecommunication services
- Thermal and chemical insulation (i.e., fire rated doors, limpet spray, lagging and gaskets)

Asbestos particles get smaller and lighter, they become more mobile and more easily wafted into the air, where human respiratory exposures typically result. The released fibres being heavier than air will eventually settle in quiescent conditions only to be re-suspended over and over again by any kind of activity or air currents over a period of time. They disperse by simple spontaneous airborne diffusion and through mass transport of the fibres.

For these reasons, asbestos is not an even source of contamination and thus does not tend to remain localized at its initial release point but will eventually spread throughout all available accessible areas of buildings, even into areas that don’t have their own asbestos-containing products. Eventually asbestos from virtually all products that were manufactured from this mineral will invade each and every space within an affected building. This is because during the lifecycle of each asbestos product, microscopic fibres and larger particles or pieces of these products are typically produced during their residency.

The lifecycle of an asbestos containing product begins from the initial delivery of the product to the building, followed by its installation, normal usage forces, age-related deterioration, physical or chemical damage that often occurs, to finally its removal either for replacement or demolition. Any small impact or damage to a typical asbestos containing product can easily release billions to trillions of fibres of asbestos into the immediate environment which then add to the pool of similar fibres and particles from other asbestos containing products within that building.
Depending on how and where asbestos was applied, it might not pose any risk to most users of the building. If the fibres cannot dislodge themselves, they cannot be inhaled, and thus the risk is absent.

However, with certain ways of applying asbestos, particularly flocking, asbestos fibres may gradually drop off into the air. Furthermore, in all cases, asbestos poses special hazards to maintenance personnel who have to drill holes in walls for installation of cables or pipes.

Also, even if the workers are protected, such maintenance operation may release fibres into the air, which may be inhaled by other users later. As a consequence, interventions in areas where asbestos is present often have to follow stringent procedures.